
Anonymity Trilemma: Beyond Mix-Nets
Debajyoti Das

Purdue University, USA
das48@purdue.edu

Sebastian Meiser
Visa Research, USA
smeiser@visa.com

Esfandiar Mohammadi
ETH Zurich, Switzerland
mohammadi@inf.ethz.ch

Aniket Kate
Purdue University, USA

aniket@purdue.edu

Abstract

In this work, we identify a class of Anonymous communication (AC) protocols that can achieve a higher level of
anonymity compared to mix-nets, by having out-of-band coordination among users in addition to all the tricks that mix-nets
can use. We argue that this new class of protocols can achieve the best of two worlds, mix-nets and DC-net-type protocols,
and characterizes most of the commonly known protocols. We analyze the upper bound on anonymity for this wider class of
protocols as a function of latency overhead and bandwidth overhead, against global passive adversaries that can additionally
passively compromise some of the protocol parties.
Even for this wider class of protocols, we prove the widely believed trilemma: It is impossible to achieve all of the
following three properties — strong anonymity, low latency, low bandwidth overhead. As a byproduct, we derive the specific
impossibility conditions for strong anonymity; and we show that, the impossibility conditions are much relaxed for our new
class of protocols compared to mix-nets. Additionally, we show that, these protocols have a much better chance at anonymity
compared to mix-nets, if strong anonymity is not required, given a restriction on latency and bandwidth overhead. Most
importantly, by proving the impossibility conditions of anonymity for this wider class of protocols, we show that the only
scope to escape the widely believed trilemma is to escape the wide class of protocols that we characterize in this work; and
that is only possible through expensive crypto-magic like fully homomorphic onion encryption, efficient amortized secret
sharing etc. This guides the protocol designers towards a new direction of research for AC protocols.

CONTENTS

I Introduction 3
I-A Our Contribution . 3

II Overview 3
II-A A primer on impossibility trilemma proofs . 4
II-B Advantages of using secret sharing in AC protocols . 4
II-C Related Work . 4

III The anonymity game 5
III-A What can and cannot protocols do? . 5
III-B Adversary . 5
III-C User message distributions . 5

IV A Protocol Model for AC Protocols 6
IV-A Protocol Model . 6

V Impossibility bounds for mix-nets 7
V-A Lower Bounds on adversarial advantage . 7

VI Impossibility bounds beyond mix-nets 7
VI-A An AC Protocol Involving Secret Sharing: . 8
VI-B Effect of Secret Sharing on Anonymity . 8
VI-C Assumption on Secret Sharing Protocols . 8
VI-D The path possibility adversary . 9
VI-E Necessary invariant for protocol anonymity . 9
VI-F Modeling Internal Noise . 10

VII Anonymity for synchronized users 11
VII-A Lower Bound on Adversarial Advantage . 11
VII-B Impossibility for Strong Anonymity . 12
VII-C Interesting Cases . 13

VIII Anonymity for unsynchronized users 13
VIII-A Lower Bound on Adversarial Advantage . 13
VIII-B Impossibility for Strong Anonymity . 14
VIII-C Interesting Cases . 15
VIII-D Modified User Distribution . 16
VIII-E Improved bound for classical protocols . 16

IX Analysis of Results 16
IX-A Impossibility Results . 16
IX-B Interesting Cases . 17

X Implications 17

XI Conclusion and Future Work 18

References 18

Appendix A: Protocol Model Revisited. 19
A-A Construction of a Concrete Adversary . 19

2

I. INTRODUCTION

Anonymous communication networks (ACNs) are critical
to communication privacy over the Internet. After almost four
decades of work, the search for an optimal ACN design is
still ongoing as we continue to find an ACN that has minimal
latency and bandwidth overhead, provides strong anonymity,
and is maximally robust against compromised protocol parties.

Recent work [1], [2] has reduced the search space of pos-
sible ACN designs by proving necessary constraints (i.e., im-
possibility results) for ACNs that relate bandwidth overhead,
latency overhead, the degree of anonymity, and robustness
to compromised protocol parties (e.g., mix-net nodes). These
existing necessary bounds leave very little hope for low-
latency ACNs in the presence of compromised protocol parties
for mix-nets: in strongly anonymous mix-nets, no matter the
bandwidth overhead, messages cannot have short latency (i.e.,
constant w.r.t. to some security parameter) in the presence a
large number of compromised parties. In fact, mix-nets from
the literature [3]–[5] propose to use very long latency to ensure
robustness against compromised parties (compromised mixes).

Fortunately, this necessary constraint on the latency seems
to be particular to mix-nets. DC-nets and its successors [6], [7],
e.g., are able to achieve very short latency (1 round) at the cost
of sending for each message one additional message to each
client (or to each client in a subgroup). Moreover, recent ACN
proposals [8] propose to use dedicated computation servers
and to run modern cryptographic multi-party protocols (e.g.,
variants of private-information retrieval) to achieve resistance
to compromised parties without requiring a very long latency.
This line of work naturally raises the following question:

How much bandwidth overhead is necessary to
achieve strong anonymity if low latency is desired
in the presence of compromised parties?

Generalizing the techniques from this line of work, our
work identifies a property that is reminiscent of secret-sharing
protocols: assuming some form of synchronization among pro-
tocol protocol parties, even the recipients of a message cannot
distinguish the packet sent by the real sender and the dummy
messages. As an example, secret-sharing a real message offline
among several protocol parties and then sending the shares
at a pre-agreed time, would achieve this property, since the
content of the message would be shared among all messages
and would not solely be contained in the message of the real
sender. Alternatively, DC-nets shared keys to produce dummy
messages that are needed to reconstruct the original message,
which also achieves our proposed property.

We abstract away from how ACNs would synchronize and
solely analyze the core of a secret-sharing based ACN: for this
core we prove a necessary relationship between bandwidth,
latency, and the degree of anonymity in the presence of com-
promised parties. In particular, for ACNs that can perform the
above-mentioned synchronization offline, our novel necessary
constraints give lower bounds on the bandwidth overhead for
ACNs with low latency and strong anonymity in the presence
of compromised parties. Our results thereby points future

research on designing optimal ACNs in the direction of secret-
sharing based ACNs.

A. Our Contribution

We identify a class of protocols that we coin secret-sharing
based ACNs, which require a synchronization procedure.
Secret-sharing protocols have to ensure that even the recipients
of a message cannot distinguish the packet sent by the real
sender and the dummy messages.

We show that the core of these protocols (i.e., with the syn-
chronization procedure) can escape the necessary constraint on
low latency for mix-nets with strong anonymity in the presence
of compromised parties. In particular, if the ACN can perform
the synchronization procedure offline, the ACN can escape the
prior necessary constraints on low latency.

We derive new upper bound on anonymity for these proto-
cols, and deduce new necessary constraints for strong anony-
mity. We additionally analyze the possibility of a weak version
of anonymity in those cases. In the process of deriving bounds
for our new wider class of protocols, we also improve upon
the existing bounds for mix-net type protocols.

We discuss the tightness of our novel necessary constraints,
and analyze interesting cases. We furthermore discuss whether
prior literature on ACNs realizes the property on ACNs that
we are proposing.

Finally, our results should make the recent ACNs designers
to reconsider their protocols. While building scalable strong
anonymity ACN solutions, they have continued to stick to
layered encryptions for their cryptographic protocol choice.
Our results will motivate the ACN dedigners to reconsider their
choice and employ secret-sharing approach for lower latency
and bandwidth overhead.

II. OVERVIEW

We identify two classes of protocols: (1) classical protocols
that do not use any kind of secret sharing technique, (2)
secret-sharing protocols that use some kind of secret sharing
technique. The work by Das. et. al. models only the protocols
what we call classical protocols. these protocols do not use
any kind of secret sharing techniques, i.e., as they write, “in
order for Bob to receive a message from Alice, Alice has to
send the message and the message (albeit relayed, delayed
and modified) eventually has to reach Bob”. In this work, we
model a wider class of protocols, where users can also collude
among themselves (out-of-band) to send shares of a message
to the recipient, and the recipient can retrieve the message
only after receiving all the shares.

Communication Rounds, Latency and Bandwidth Over-
head. Protocols in our model follow synchronous rounds for
communication as in [9]–[12]. Every protocol is constrained
by two important parameters: the latency overhead `, which
describes how many rounds each message may reside in the
protocol before it has to be delivered and the bandwidth
overhead B describing the number of noise messages the
protocol can create for each real message.

3

Adversaries. Following [13], we consider global passive
adversaries, that observe all communication between protocol
parties and that can additionally compromise c protocol parties
to learn the mapping between inputs and outputs for this
party. Note that a compromised party follows the protocol
specifications correctly, and can not learn anything other than
the mapping between inputs and outputs for that party.
Anonymity Property. We use an indistinguishability-based
anonymity notion to quantify sender anonymity [14]–[17]: we
measure the adversarial advantage as the probability that the
adversary can distinguish two senders of its own choosing;
anonymity then describes limits on this adversarial advantage.

Given a security parameter η that can be related to the
number of protocol parties, we say that a protocol provides
strong anonymity in η, or strong anonymity for short, if the
adversary’s advantage δ is negligible in η. In Section III we
explain the significance of such a security parameter in detail.

A. A primer on impossibility trilemma proofs

To provide bounds for secret-sharing protocols, we follow
a proof technique similar to that of Das. et. al. [13] We
derive the lower bounds on delta, alternatively upper bound
on anonymity, in four steps as described below.

The first step is to define a concrete adversary Apaths is the
passive (but can passively compromise some protocol parties)
adversary class. Any advantage gained by the Apaths is at least
as much as the advantage gained by the strongest adversary
in the given adversary class.

In the second step, we identify an invariant, if remain
unfulfilled by a protocol, will ensure that Apaths wins. And
therefore, a protocol can at best achieve as much anonymity
as the probability of satisfying the invariant, against the given
(passive) adversary class.

Third, we identify an optimal protocol Πideal that satisfies
the invariant with a probability at least as high as any other
other protocol in our model (bounded by the same ` and B
restrictions).

Finally, we calculate an upper bound on the probability of
Πideal fulfilling the necessary invariant against Apaths - which
gives us a lower bound on the adversarial advantage δ for the
passive adversary class against all protocols in our model.

B. Advantages of using secret sharing in AC protocols

When protocols are allowed to use more than onion routing,
the protocol will not gain any additional advantage from that in
case all the intermediate protocol parties are honest, and hence,
the bounds will remain the same as Das. et. al. [13] However,
when the adversary is allowed to compromise protocol parties,
secret sharing techniques can provide resistance against that,
and provide the protocol some advantage.

To explain the advantage gained by a protocol with secret
sharing, let us consider an example with ` = 0, B = N, in
the case of synchronized user distribution. Since ` = 0, a
protocol does not have any chance of mixing the messages
using an intermediate party, users will have to directly dispatch
the messages to the recipient. Without any secret sharing

technique, the protocol can not achieve any anonymity. On
the contrary, if a protocol can use out-of-band secret sharing
technique, all N users can send a share each for a real message.
When the recipient receives all the shares, he has to combine
them to retrieve the actual message. If the shares themselves
do not reveal anything about the sender, the recipient has no
way to determine who among the N users is the real sender
— Thus, the protocol can achieve anonymity. Although this
is an extreme example where ` = 0, B = N, it demonstrates
the fact that secret sharing can help a protocol.

In another example, when K
c ≥ 2, B < N

2log(η) , ` < log(η),
neither classical nor secret sharing protocols can achieve
strong anonymity as shown in Table III in Section IX. How-
ever, the advantage of the adversary can be much lower against
a secret sharing protocol compared to a classical protocol.

More generally, we show that there are inherent lower
bounds on δ, depending on the number of users N, the latency
overhead `, the bandwidth overhead B and the number of
compromised parties c out of the K (internal) protocol parties:

Synchronized Users:

δ ≥
(

1− B
N−1

)
×
[
1 − (τ+1)N−B(`+1)−(`+1)

N × g(τ) −
B(`+1)+(`+1)−τN

N × g(τ + 1)
]

where τ = bB(`+1)+(`+1)
N c, and

g(x) =


1 c < x(`+ 1) ≤ K

1 c ≤ K ≤ x(`+ 1)

1−
(c

x(`+ 1)

)/(K

x(`+ 1)

)
x(`+ 1) ≤ c ≤ K.

Unsynchronized Users:

δ ≥



(
1− Beff

N−1

) [
1− g(Z)×

(
1− (1− p)`+1

)]
, c ≥ `+ 1(

1− Beff
N−1

)
(1− p)`+1−c

[
1−

(
1− (1− p)c

)
×
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(K
c

)])]
c < `+ 1

where Beff = min(B, (`+1)p−1), Z = min(`+1, 2Beff +1),
W is a random variable denoting the number of additional
shares for the challenge message.

C. Related Work

Das et al. [13] formalize and confirm the anonymity
trilemmna. They provided the formally bounded necessary
conditions for anonymity and showed for which parameters
of bandwith overhead and latency overhead strong anonymity,
i.e., anonymity up to a negligible adversarial advantage, is
impossible. However, in the presence of compromised protocol
parties, that work solely provides necessary constraints for
mix-nets, not for secret-sharing based ACNs.

In a prior work, Oya et al. [18], also provides a generic
attacker in a general model that encompasses a large class of
ACNs. That work, however, concentrates on the bandwidth
overhead in terms of dummy messages for protocols based on
pool mixes specifically. Their result does not give insights into
the relationship between the dummy message, latency over-
head, the compromisation rate and the degree of anonymity.

4

Recently, Ando et al. [19] derived necessary constraints for
communication complexity and the degree of anonymity in
the presence of active attackers for mix-nets. Hence, that work
does not capture bandwidth overhead and, more importantly,
does not provide necessary constraints for secret-sharing based
protocols. More recently, Ando et al. [20] proved about mix-
nets that anonymity can only be achieved if each client
transmits on average a superlogarithmic number of packets.

III. THE ANONYMITY GAME

We define anonymity by a game between a challenger
(controlling the protocol) and a global passive adversary,
following the AnoA framework [16], [17]. The challenger
receives all protocol parameters and a description of how users
want to send messages (the user distribution), as well as a
challenge bit b that influences, e.g., for sender anonymity,
which of two adversarially chosen senders actually sends a
particular challenge message. The adversary’s goal is to guess
this challenge bit based on its observations. In this section
we briefly introduce the relevant concepts of this anonymity
game. Formally, the anonymity definition is as follows:

Definition 1 ((α, δ)-IND-ANO from [13]). A protocol Π is
(α, δ)-IND-ANO for the security parameter η, an adversary
class C, an anonymity function α and a distinguishing factor
δ(·) ≥ 0, if for all PPT machines A ∈ C,
Pr [0 = 〈A|Ch(Π, α, 0)〉] ≤ Pr [0 = 〈A|Ch(Π, α, 1)〉] + δ(η).

Π provides strong α-anonymity [13]–[15] if it is (α, δ) −
IND-ANO with δ ≤ neg(η) for some negligible function neg.

Π provides quadratic α-anonymity if it is (α, δ)−IND-ANO
with δ ∈ O(1

η2).

Here 〈A|Ch(Π, α, b)〉 stands for the interactive game be-
tween the challenger and the adversary, where the adversary
can send messages of two flavors:
• (Input, u,R,m), which prompts the challenger to make

user u send a message m to recipient R.
• (Chall, u0, u1, R,m) for sender anonymity, in which

case the challenger selects one user based on the chal-
lenge bit b, and then instructs user ub send a message m
to recipient R.

After receiving the adversarial inputs, the challenger runs the
protocol based on these choices. The challenger then forwards
all adversarial observations to A.

On the meaning of η. In our analyses we tie η to system
parameters such as P, [c], `, B, N, etc.; we explicitly describe
the relationship between η and these parameters for the cases
we consider. The system parameters don’t have to increase
with η necessarily. In some cases, parameters may decrease
as η increases, for example, the bandwidth overhead B might
decrease as the latency overhead increases, or the ratio of
compromised (or honest!) parties might decrease.

Note that if an AC protocol has strong anonymity, it is
secure under composition (e.g., for streams of messages or
usage over a longer time period) and formally, η limits the
number of compositions.

A. What can and cannot protocols do?

Anonymous communication protocols are still communica-
tion protocols, so we require them to ultimately transmit mes-
sages from senders to recipients; these messages are encoded
in packets of information. A protocol may utilize its set of
(internal) protocol parties P to mix, delay or modify packets
(i.e., encrypt or decrypt them).
Time. We use a round-based definition of time in which we
assume that all protocol parties work in synchronized rounds.
In each round, a party can send packets to other parties that
will receive the packets at the end of the round (and can then
send them on in the next round). We allow, but abstract away
from any cryptographic operations locally performed on these
packets and we don’t consider the computation time required
for such operations: independently of the cryptographic oper-
ations performed, a packet is always ready for being sent in
the round after it arrived.

We define the latency overhead ` of a protocol as the number
of rounds that pass between the round in which a message is
scheduled for being (originally) sent by a user u and the round
it is received (and potentially reconstructed) by a recipient R.
We define the bandwidth overhead B as the number of noise
messages that the protocol can create for every real message.

B. Adversary

Following [13], we consider global passive adversaries,
that observe all communication between protocol parties and
that can additionally compromise c protocol parties. These
“compromised parties” still follow the protocol specification
and thus are considered honest but curious or “passively
compromised”.

We assume that our adversary does not or cannot interfere
with packets in transmission and cannot link packets sent by
a party to packets previously received by that party, except
if the party is compromised. This is equivalent to assuming
an authenticated and encrypted channel between all protocol
parties.

C. User message distributions

We follow [13] in their distinction between two types of
user distributions, i.e., two different definitions of hoe users
interact with the protocol; Das et Al. distinguish between
a synchronized user distribution UB and an unsynchronized
user distribution UP . In the synchronized user distribution UB
the users (globally) agree that every round exactly one user
gets to send a message, while other users may or may not
send noise messages (within the bandwidth overhead). In the
unsynchronized user distribution UP every user flips a (biased)
coin with success probability p in every round, independently
of other users, to determine whether or not they will send a
message (real or noise) in this round.

The synchronized user distribution can be seen as a con-
trol group that is particularly protocol friendly and over-
approximates many ways that the protocol could in an offline-
phase synchronize when users send messages. A similar kind
of synchronization is actually even discussed for DC-net kind

5

of protocols (to ensure that messages from a sender can
actually be reconstructed). Our results show that even for this
protocol-friendly user distribution UB many interesting cases
are the same as for the unsynchronized UP .

IV. A PROTOCOL MODEL FOR AC PROTOCOLS

We follow [13] in our definition of a protocol model but
extend a protocol’s capabilities by allowing some secret-
sharing style techniques. Technically, a protocol is defined
as a colored Petri net in which senders S send packets
to recipients R via some anonymizing proxies P. Protocols
operate in rounds. Whenever a packet is sent from one of
these entities to another, the eavesdropping adversary learns
that a packet is sent as well as the round in which this
occurred. The adversary is allowed to compromise a number of
c proxies. Whenever one of these compromised proxies sends
a packet, the adversary learns to which (previous) incoming
packet it corresponds; otherwise the adversary does not learn
this. In addition, the adversary compromises all recipients and
upon receiving packets can learn their content. Secret-sharing
techniques add to the adversary’s confusion here by requiring
receiving several packets to (re-)construct a real message.

In this section we introduce the necessary formalism for
understanding our results and describe how we modify the
original Petri net model. For technical details we refer to [13].

A. Protocol Model

An AC protocol M consists of places S for senders,
P1, . . . , Pk for proxies/internal protocol parties and places
R for recipients of packets as well as an additional place
$ populated with random coins. Each packet is a colored
token (read: tuple of values) that in every round is allowed
to transition from one place to another (using a transition
T). Each packet q = 〈tag, meta, tr, IDt, prev, next, ts〉
is comprised of four public fields (IDt, prev, next, ts) that
can be observed by the adversary and three private fields
(tag, meta, tr) that are hidden from the adversary with the
exception that the field tag is revealed to the recipient.1

- tag represents the content of the packet that the recipient
will use to reconstruct a message,

- meta contains all internal protocol meta-data for this mes-
sage (and is not important for our analysis),

- tr is the time (in number of rounds) the message can still
remain in the network (initially this is set to `),

- IDt is a new unique ID generated by each transition for
each token by honest parties; dishonest parties instead keep
IDt untouched to allow the adversary to link incoming and
outgoing messages,

- prev is party/user that sent the token and next is the
user/party that receives the token.

- Finally, ts is the time remaining for the token to be eligible
for a firing event (a feature of timed Petri net). Here, ts either
describes when new messages are introduced into the Petri

1Since we only consider sender anonymity we do not need to specify the
recipient in the token.

net or is set to the next round, such that messages can be
processed in every round as soon as they enter the network.
The recipient has access to a dictionary D (outside the petri-

net); when a packet reaches the recipient, the recipient queries
a dictionary D to retrieve the corresponding message. The
dictionary has four fields 〈tag,msg, count, countNeeded〉.
The field msg stores the actual content of the message. The
fields tag,msg, countNeeded are already populated (during
initialization of the system), whereas the value of count is set
to 0 initially. Every time, the recipient queries the dictionary
with D[tag], the dictionary increments the value of count by
1; and only when count reaches the value of countNeeded
it returns msg. We want to specify here that each token in our
petri-net model can contain only one tag.

TX on tokens q = 〈tag, , tr, IDt, , prev, ts, tag〉 from
X ∈ S ∪ P, $ from $1:

(P ′,meta′) = fΠ(q, $) ; r = current round
if tr = 0 then P ′ = R
if X ∈ P and X is compromised then IDt

′ = IDt

else IDt
′ = a fresh randomly generated ID

t = 〈tag,meta′, tr − 1, IDt
′, Pi, P ′, 1〉

if P ′ = R then obs = 〈tag, , , IDt
′, prev, P ′, 1〉

else obs = 〈 , , , IDt
′, prev, P ′, 1〉

Tokens = Tokens ∪ {(obs, r)}
Output: token t at P ′

fΠ: a function provided by Π to choose P ′ and to keep state meta.

Reconstruct(tag):

if tag = ⊥ or D[tag] does not exist then return ⊥
D[tag].count = D[tag].count + 1
if D[tag].count = count.countNeeded then return D[tag]
else return

Fig. 1. Transitions in the Petri net model M

Transitions. A Petri net uses transitions to move tokens
from one place to another, to modify them and to consume
or create tokens. In our case, we mostly move tokens from
one place to the next which represents the transmission of a
packet from one protocol party to another. In the process of
moving a token, we change their field IDt whenever they are
moved out of the place of an honest proxy, which simulates
that the adversary cannot trace packets through an honest
proxy. From a technical point of view, transitions implement
the representation of the network and provide the adversary
with the appropriate observations. A protocol cannot influence
what each transition does, but can choose which transition is
taken, with the important exception that tokens that run out of
their allowed latency overhead always are sent to the recipient.

Initially, all places except for the S place and the place
for randomness $ are empty. Transitions consume tokens
from those two places to place tokens in other places, which
represents the movement of packets.

We have only one type of transaction that moves tokens
from one place to another, representing the transmission of a
packet from one entity to another. Each transaction TX takes a
token q from the place X ∈ S∪P and creates two new tokens:

6

(1) a token q′ representing the same packet that is handed to a
new place and (2) an adversarial observation (obs, r) annotated
with the round number r that is added to a set of observed
tokens Tokens. We refer to Figure 1 for a technical description
of the algorithm implemented by TX .

Validity of M . The way of populating S and defining tran-
sitions naturally enforces bandwidth and latency overheads.
Our model stays close to that of [13] and thus leverages their
validity proof. Our definitions merely simplify their formalism
and thus don’t affect the validity on a per-packet basis. We
do add on message tags and a reconstruction algorithm, but
sufficiently restrict it when populating S .

V. IMPOSSIBILITY BOUNDS FOR MIX-NETS

The work by Das. et. al. [13] takes a first step at deriving
impossibility results for ACNs, but they only consider mix-
net protocols where users do not use any secret sharing.
Which means, “in order for Bob to receive a message from
Alice, Alice has to send the message and the message (albeit
relayed, delayed and cryptographically modified) eventually
has to reach Bob”. This rules out protocols like DC-net or
other secret sharing based protocols. In this section, we are
going to summarize the bounds on anonymity for mix-net
presented by Das. et. al. [13].

Necessary invariant for protocol anonymity. It is necessary
that at least both challenge users send messages in one of the
` rounds before the challenge message reaches the recipient,
as otherwise there is no way both of them could have sent
the challenge message. Moreover, on the path of the actual
challenge message, there needs to be at least one honest
(uncompromised) party, as otherwise the adversary can track
the challenge message from the sender to the recipient. Those
two conditions together form the necessary protocol invariant
in the work by Das. et. al.

Invariant 1. Let u0 and u1 be the challenge users; let b be the
challenge bit; and let t0 be the time when ub sends the chal-
lenge message. Assume that the challenge message reaches the
recipient at r. Assume furthermore that u1−b sends her mes-
sages (including noise messages) at V = {t1, t2, t3, . . . , tk}.
Next, let T = {t : t ∈ V ∧ (r − `) ≤ t < r}. Then,

(i) the set T is not empty, and
(ii) the challenge message passes through at least one honest

node at some time t′ such that, t′ ∈ {min(T), . . . , r − 1}.

A. Lower Bounds on adversarial advantage

Using Invariant 1, Das. et. al. derive the following lower
bounds on the adversarial advantage δ against mix-net type
protocols for synchronized (UB) and unsynchronized (UP)
user distributions.

Theorem 1. For user distribution UB , even with c = 0, no
protocol Π ∈ M can provide δ-sender anonymity, for any
δ < 1−fβ(`), where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Theorem 2. For user distribution UB , no protocol Π ∈ M
can provide δ-sender anonymity, for any

δ <

{
1− [1−

(
c
`

)
/
(
K
`

)
]fβ(`) c ≥ `

1− [1− 1/
(
K
c

)
]fβ(c)− fβ(`− c) c < `

where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Theorem 3. For user distribution UP , even with c = 0, no
protocol Π ∈ M can provide δ-sender anonymity, for any
δ < 1−

(
1
2 + fp(`)

)
, where fp(x) = min(1/2, 1− (1− p)x) for

a positive integer x.

Theorem 4. For user distribution UP , no protocol Π ∈ M
can provide δ-sender anonymity, for any

δ <


1− [1−

(
c
`

)
/
(
K
`

)
][12 + fp(`)] c ≥ `(

1− [1− 1/
(
K
c

)
][12 + fp(c)]

)
×
(

1− [1/2 + fp(`− c)]
)

c < `

where fp(x) = min(1/2, 1 − (1 − p)x) for a positive integer
x.

Throughout our paper we shall call them classical impos-
sibility bounds. The impossibility conditions provided by the
classical bounds are summarized in Table I.

TABLE I
Impossibility Results for Anonymous Communication (Mix-nets), with the
number of protocol-nodes K, number of compromised protocol parties c,
number of clients N, and message-threshold T , expected latency `′ per
node, dummy-message rate β. In all cases we assume that ` < N and

βN ≥ 1 and ε(η) = 1/ηd for a positive constant d.

dist. Compromisation Latency&Bandwidth
UB c = 0 2`β < 1− ε(η)
UB K > ` > c ∈ O(1) 2(`− c)β < 1− ε(η)
UB K > ` > c ∈ poly(η) 2`β < 1− ε(η)
UB K > c ≥ ` 2`β < 1− ε(η) or ` ∈ O(1)
UP c = 0 2`p < 1− ε(η)
UP K > ` > c ∈ O(1) 2(`− c)p < 1− ε(η)
UP K > ` > c ∈ poly(η) 2(`− c)p < 1− ε(η)
UP K > c ≥ ` 2`p < 1− ε(η) or ` ∈ O(1)

VI. IMPOSSIBILITY BOUNDS BEYOND MIX-NETS

Here we will constructively investigate an abstract pro-
tocol within our model that combines secret-sharing with
mixing techniques. We then show that, indeed, the protocol
can achieve a better degree of anonymity than the classical
impossibility results in Section V indicate.

The intuitive reason for this effect is that such protocols
can introduce ambiguity in terms of which message content
is within which network packet. Imagine an adversary that
compromises every node in the path that a particular packet
traverses and that then observes the packet is being used to
reconstruct a message. This adversary might not always learn
who actually sent the reconstructed message: All the packets
with shares that belong together have to be combined to learn
the respective message sent in the particular round and thus
all potential senders of these packets could be the sender of
the message.

7

A. An AC Protocol Involving Secret Sharing:

Our envisioned protocol falls within our protocol model
(Section IV) and, crucially, leverages secret-sharing techniques
as follows: Users that don’t want to send messages in a given
round can send noise messages of a special kind that we call
shares. Each such share is associated with one real message
(with content) within the system and the recipient needs to
collect all the shares for a message in order to decipher
it. When a message and its shares reach a recipient, the
adversary can thus only learn that the message has reached
and which packets were involved in reconstructing it, but
not point to one specific packet it was in. We assume that
the adversary can not break the secret sharing and hence
can not decipher an individual secret before it reaches the
recipient. Additionally, we assume an efficient out-of-band
secret sharing. (For instance, in DC-net [21] with pre-setup
key agreement, the protocol parties only need to publish their
local messages.)

The protocol works in the following way:

1) Based on the user distribution, users decide when to send
messages.

2) Whenever a user is supposed to send a noise message,
he just participates in a secret sharing for a real message from
some other user. Instead of a noise, the user sends a share.

3) Users run an out-of-band consensus protocol to decide
when their messages (real message or noise) are going to be
delivered, such that in a given round the recipient receives
shares of the same message and all the shares of that message
(we consider an t-out-of-t secret sharing).

4) We assume a series of relays (up to K relays), out of
which c (chosen uniformly at random) are compromised; and
using those relays the users can send the messages to the
recipient. Once the protocol starts, the sequence of the relays
is known to all users. Suppose, Alice is supposed to send
a message at round t, and her message is supposed to be
delivered at round r. Alice onion-encrypts the message to
ensure it is delivered at round r.

5) In a given round, the recipient combines all the shares
that he receives to extract the real message.

Analysis of Adversarial Advantage for the above protocol.
We know from Section V that for the synchronized user
distribution, the adversarial advantage δ should be lower
bounded by, δ ≥ 1−

[
1−

(c
`

)
/
(K
`

)]
×min

(
1, `+βN`N−1

)
.

However, for our described protocol, if by chance the user
u1−b is sending any of the shares of the challenge message,
the adversary can not win, even if it can trace all messages and
arbitrarily many nodes are compromised. Therefore, δ ≤ 1−
βN
N−1 . Recall that the consensus and secret sharing can happen
out of band and thus doesn’t add any bandwidth overhead here.

Hence, our protocol escapes the impossibility result in [13],

for ` = 1,K = 2, c = 1, when the following is true:

1− βN

N− 1
< 1−

[
1−

(c
`

)
/
(K
`

)]
×min

(
1,
`+ βN`

N− 1

)
⇐⇒ βN

N− 1
>

1

2
×min

(
1,
`+ βN`

N− 1

)
⇐=

βN

N− 1
>

1

2
× `+ βN`

N− 1
assuming

`+ βN`

N− 1
< 1

⇐⇒ 2βN > 1 + βN ∵ ` = 1

⇐⇒ βN > 1 ⇐⇒ β >
1

N

Thus, even if only one user per round can send one share,
our protocol violates the classical impossibility bounds. We
now proceed to analyze the effect that such secret sharing can
have on anonymity before deriving novel impossibility results
that are still valid in light of secret sharing.

B. Effect of Secret Sharing on Anonymity

As we demonstrated above, an AC protocol can utilize secret
sharing to increase the chance of achieving anonymity. If a
set of users sends shares for a given message, the adversary
has no way to distinguish the actual sender of the message
from other users in the set, unless the secret sharing scheme
is broken. This feature of secret sharing provides the AC
protocols with a resistance against compromised relays. If an
AC protocol can achieve an efficient/out-of-band secret sharing
scheme (like DC-net) as well as can utilize relay nodes, it can
escape the impossibility results from Section V. However, if
all the relay nodes are honest, secret sharing does not provide
any additional advantage, and the impossibility results from
Section V remain valid. In the following sections, we shall
present new lower bound on adversarial advantage (upper
bound on anonymity) in the presence of compromised relay
nodes, both for the synchronized user distribution and for the
unsynchronized user distribution.

We use the protocol model, adversarial model, and security
game as described in Section IV to derive our impossibility
bounds. In this section, we define new necessary invariant,
more relevant for secret sharing based protocols, against our
well defined adversary Apaths. Then we define an ideal
protocol which maximizes the probability of satisfying the
invariant against Apaths. In the later sections, we follow the
proof technique described in Section II to derive lower bounds
on adversarial advantage. But first, we formally state the
assumptions on secret sharing based protocols in our model.

C. Assumption on Secret Sharing Protocols

Secret sharing techniques span a wide array of actual
methods, some of which we deem unreasonably strong. In
this section we highlight which protocols our protocol model
intentionally excludes:

Challenge 1. Our necessary constraints are based on the
assumption that the protocol does not use a secret sharing
scheme that generates w < k×n shares for n messages where
at least k shares are necessary to reconstruct each of the m
messages correctly, without using any trusted third party, with

8

a communication of O(m) and constant latency overhead. If
a protocol used such a scheme it would be possible for that
protocol to achieve strong anonymity with constant latency
overhead, and constant bandwidth overhead per message.

Invisible senders: We also assume that one of the users who
send the shares is the actual sender. We do not consider the
scenario where a set of users send shares for user u, however
u is not part of that set. In that case, user u will have to
explicitly distribute the shares to the other users directly or
through a trusted third party. Then, that can be considered as
the ”Splitting and recombining” scenario mentioned in ?? and
thus follows our previous impossiblity bounds.
Cheating the latency bound with shares: To conform with
the latency overhead `, if a message is scheduled to be sent
in round t0 by the user distribution, all shares of that message
must reach the recipient before round t0 + `.
Expensive cryptographic techniques: If the protocol uses
strong and expensive cryptographic primitives, such as some
form of obfuscation / homomorphic outsourced computation /
non-interactive multi-user ORAM property2, then the follow-
ing becomes possible: even passively compromised nodes can
be used to mix messages, i.e., the node cannot know which
of its own outputs are related to which of its own inputs.

Consider the following instructive example, where two
users, Alice and Bob send messages to a node M and utilize a
variant of functional encryption. Alice sends: EncF [x, r] and
Bob sends: EncF [y, r], where r is the current round number.
M now computes F(Enc[x, r], Enc[y, r′]) := sorted(x, y)

if r = r′∧x 6= y, and thus, M learns both x and y, but cannot
know which of them came from which user. M cannot decrypt
only one of them. We acknowledge that this is not necessarily
an efficient or realistic instantiation, which is why we chose
not to model this or similar behavior.
Consequence: No-obfuscation assumption: A compromised
node can always relate incoming and outgoing packets. More
precisely, if two packets enter a node and two packets leave a
node, the node is able to tell how much information of each
incoming packet is encoded in which outgoing packet.

Challenge 2. Our impossibility result is based on the assump-
tion that no protocol can achieve mixing in a dishonest node.
We leave it as an open question whether an efficient method
for doing so exists.

Why we don’t consider packet splitting and recombining
at a node level. Without obfuscation (which could allow
compromised nodes to mix messages), nodes could still split
and recombine messages. We here assume that messages are
already maximally densely packed, so any splitting and recom-
bination does not reduce the size of transferred information. 3

However, note that any splitting at a node-level could be
done at the client level as well. The clients can already
send divided messages (we then count additional parts of a

2The Pung protocol [22], goes in this direction by using PIR. The Pung
protocol is, however, very inefficient.

3We assume that encryption is free.

message as bandwidth overhead). This only shows that we
can ignore node-level message-splitting, which we could not
easily account for.

D. The path possibility adversary

Formally, we utilize a path possibility adversary Apaths as
in the work of Das. et. al. [13]: The adversary observes all
communication patterns of all users. Upon arrival of the chal-
lenge message at the recipient, the adversary checks whether
one of the challenge users could not have sent this message,
i.e., whether it is impossible to construe a consecutive path
from the user to the challenge message’s arrival that satisfies
the latency constraint. If one of the users can be excluded in
this way, the adversary obviously guesses that the other user
sent the challenge message. Otherwise, the adversary simply
flips a coin to decide which challenge user to output. For a
complete description of the adversary please see Section A-A.

E. Necessary invariant for protocol anonymity

To prove our version of the anonymity trilemma for proto-
cols with secret sharing, we define a necessary invariant, i.e.,
if the invariant is not satisfied for a protocol run, then even a
fairly simple adversary will win independently of any further
actions taken by the protocol.

Analogously to Section V we now derive new an invariant
that remain necessary for anonymity and are more relevant in
the presence of secret-sharing techniques.

Invariant 2 (New Invariant). Let u0 and u1 be the challenge
users; let b be the challenge bit; and let t0 be the time when
ub sends the challenge message. Assume that the challenge
message reaches the recipient at r. Assume furthermore that
u1−b sends her messages (including noise messages) at V =
{t1, t2, t3, . . . , tk}. Now, let T = {t : t ∈ V ∧(r−`) ≤ t < r}.
Then,

(i) the set T is not empty, AND
(ii) a. at least one share of the challenge message is dis-

patched by u1−b within rounds {(r− `), . . . , (r− 1)},
OR

b. at least one share of the challenge message passes
through an honest node at time t′ such that t′ ∈
{min(T), (r − 1)}, AND at least one of the mes-
sages (real message or noise) from u1−b, sent at
t ∈ {(r − `), . . . , (r − 1)}, passes through an honest
node at time t′ such that t′ < r.

Claim 1 (Invariant 2 is necessary for anonymity). Let Π be
any protocol ∈ M with latency overhead ` and bandwidth
overhead β. Let u0, u1, b and T be defined as in ??. If
Invariant 2 is not satisfied by Π, then our adversary Apaths
as in Section VI-D wins.

Proof Sketch. To prove the above, we need to prove that
anonymity is broken whenever either of part(i) or part(ii) is
false.

Whenever part(i) is false, the set T is empty. As a result,
the adversary certainly knows that the challenge message is
not sent by the u1−b.

9

For part(ii) of the invariant to be false, both part(ii.a) and
part(ii.b) have to be false. Note here, part(ii.a) directly implies
anonymity, because if one of the shares of the challenge mes-
sage is dispatched by u1−b within rounds {(r−`), . . . , (r−1)}
there is no way for the adversary to distinguished between the
challenge users.

However, given that part(ii.a) is already false, part(ii.b) can
be false in the following ways:

1) no share of the challenge message passes through an
honest node: When the adversary backtracks the paths of the
shares challenge message starting from the recipient, the path
will never cross the paths of the messages from u1−b at an
honest node. So, the adversary will be able to exclude all of
them from the possibility of being a share of the challenge
message. That way, Apaths can eliminate u1−b from the
possibility of being the challenge user, and hence Apaths wins.

2) At least one of the shares of the challenge message sent
at t ∈ T passes through one or more honest nodes at times t′,
but 6∃ t′ such that t′ ∈ {min(T), (r−1)}: Following the same
reasoning as above, we see that paths after round min(T)
can be ambiguous, but there is no message from u1−b before
min(T). So, none of them will mix with any of the shares of
the challenge message. Thus, Apaths wins.

3) no message from u1−b sent at t ∈ T passes through an
honest node: Similar to previous cases, when the adversary
backtracks the paths of the shares challenge message starting
from the recipient, the path will never cross the paths of the
messages from u1−b at an honest node. So, the adversary will
be able to exclude all of them from the possibility of being a
share of the challenge message.

4) At least one of the messages from u1−b sent at t ∈ T
passes through one or more honest nodes at times t′, but 6∃ t′
such that t′ < r: Following the same reasoning as above cases,
we see that paths after round r can be ambiguous, but the
challenge message is already delivered at round r. So, none of
them will mix with any of the shares of the challenge message.

In all possible cases where part(ii.b) is false, Apaths wins
with probability 1, given that part(ii.a) is already false.

F. Modeling Internal Noise

Here we characterize how the protocols can utilize internal
noise, i.e., noise messages generated by a protocol party 6∈ S,
so that we can quantify the bandwidth overhead caused by
those noise messages, as well as compare them fairly with
noise messages sent by clients. In order to do so, we place the
following assumptions on internal noise messages:

1) Since, we do not allow client messages to be dropped,
we do not allow internal noises to be dropped.

2) If an internal noise is tagged as a share of message m,
that tag can never be changed.

3) Similar to client messages, an internal noise needs to be
delivered to the recipient within ` rounds from its generation.

4) Internal noise messages must not violate the latency
bound of the message that the noise is tagged with. Example:
if a node tags a message with A, then the latency of A must be

retained, i.e., all messages tagged with A must arrive within
` rounds of the round in which the user wanted to send A.

Claim 2 (Internal noise can be replaced with user noise).
For every protocol that uses noise messages originating from
internal protocol parties (6∈ S) and latency overhead `, there
exists a protocol that uses only user generated noise messages
(noise messages originating from an user u ∈ S) and latency
overhead ` + 1 with at least equal probability of satisfying
Invariant 2.

Proof sketch. We prove this claim by construction. Given a
protocol Π1 we want to construct a protocol Pi2 that satisfies
the invariant with at least the probability as Π1. Once, an
internal noise message is created, the content of the message
can not be modified (although, it can be re-encrypted with
different keys or decrypted), the message has to be delivered
to the recipient. Additionally an internal noise message can
remain in the system for min(`, z). where z is the latency
bound for the message tag the message wants to use. Thus,
having a user send a message ”costs” as much as having
internal nodes create the message. (Any internal noise message
created not as a share of a user message will not influence the
probability of the invariance being true.)

Now two cases can happen:
1) A dishonest node creates the noise message: since,

messages can not mix at a dishonest node, this does not help.
Instead, a message sent by a user could help the protocol.

2) An honest node creates the noise message: This can
definitely help the protocol. However, if a user creates the
noise one round before and sends it to the given internal node
in the current round, that is at least as good as a noise message
created by the node in the current round.

Hence, for each internal noise message m (created at round
r) in Π1 , we make Π send a noise message from a user
(picked uniformly at random) at round r−1. And, because of
the reasons explained above, Π2 will have at least the same
probability as Π1 in satisfying Invariant 2. However, Π2 now
uses latency overhead ` + 1 for the messages corresponding
to the internal noises in Π2 that uses latency overhead `.

Ideal Protocol. Following Claim 2, we allow our ideal
protocol to have latency overhead of ˆ̀= `+1, and assume that
every message is created by some user u ∈ S . Consequently
the adversary behaves as if he is dealing with a protocol that
is allowed to have ˆ̀ latency overhead.

Now we construct a protocol Πideal that intends maximize
the probability of satisfying Invariant 2 against Apaths, for
allowed latency overhead ˆ̀. The protocol has a number of pre-
defined paths. Those paths are constructed at the beginning of
the protocol and do not change throughout the protocol run.
Each path is of length ˆ̀, and consists of ˆ̀ unique protocol
parties, if available. Πideal has access to an oracle O to decide
the number of paths and distribution of protocol parties in
each path. We talk about the oracle in more detail later in this
section.

10

Whenever a message (real or noise) is sent to a path it is
sent to the protocol party at the position r mod ˆ̀ in the path,
if the current round number is r. In the next round either
the message is delivered to the recipient, or transferred to the
next protocol party (at position (r+ 1) mod ˆ̀) in the same
path. For every message, Πideal queries the oracle O to decide
which path the message should be sent to and the number of
rounds the message should remain in the protocol.

If the same user sends multiple messages (real or noise)
in a given interval of ˆ̀ rounds, the objective of the protocol
is to send the messages on different paths, so that the total
number of protocol parties on the paths of those messages is
maximized. Furthermore, shares of the same message should
cover as many paths as possible.

Since the protocol has control over the noise messages, it
tries to maximize the number of unique users that send the
shares for a given message. Additionally, the protocol also tries
to maximize the total number of users that send messages in
an interval of ˆ̀ rounds. To achieve the above, Πideal queries
the oracle O for each noise message, and O returns the real
message that the noise should be share of.

The oracle O is an overapproximation of different strategies
that a protocol can use to optimize paths and noise message.
Our oracle knows the user distribution, all past and future
messages, the number of compromise parties, and the protocol
strategy. The protocol is oblivious to the challenge message,
the challenge bit, the challenge users, the identity of the
protocol parties who are compromised; and so is the oracle.
Thus, given the user distribution, the past and future messages,
and the number of compromised parties, the oracle tries to
maximize the probability of satisfying the invariant for the
given protocol strategy, against the given adversary.

Claim 3 (Ideal protocol is at least ideal for Invariant 2).
Against the given adversary Apaths, Πideal with latency ˆ̀

satisfies Invariant 2 with probability at least as high as any
other protocol in M with latency `.

Proof. We want to prove our claim by contradiction. Suppose,
there exists a protocol Π, given a latency `, satisfies Invariant 2
with a higher probability than Πideal (that uses latency `+ 1),
against the adversary Apaths. By Claim 2, we can construct a
protocol Πnew where every message is created by some user
u ∈ S , and allow Πnew to use a latency of ˆ̀ = ` + 1; and
Πnew will have a probability at least as much as Π to satisfy
the invariant.

Now we construct a new protocol Πhybrid, which exactly
follows the strategy of Πideal with one exception: for a given
message Πhybrid selects the time delay t same as Πnew,
instead of querying it from oracle O of Πideal.

The ideal strategy for ensuring that at least one honest party
is on at least one the path of the messages from u1−b is to
ensure that as many distinct parties as possible are on all the
paths combined. Similarly, the possibility of having an honest
party of the paths of the shares of the challenge message is
also maximized by maximizing the number of distinct parties
on all those paths combined.

For both Πnew and Πhybrid, the times when messages are
sent and the time delays are same, and hence, for every
message the path length is same for both Πnew and Πhybrid.
However, Πhybrid decides the number of paths, and distri-
bution of the protocol parties on those paths by querying
the oracle. Hence, Πhybrid has a probability of satisfying
Invariant 2 at least as high as Πnew.

Now, if we compare Πhybrid and Πideal : they follow
the same strategy. But Πideal picks the time delay t for
any message from oracle O such that t is optimal. Hence,
Πideal satisfies Invariant 2 with probability at least as high as
Πhybrid. Thus, Πnew does not satisfy Invariant 2 with a higher
probability than Πideal.

From here onwards, we assume that messages (real or noise)
are generated only by users ∈ S, and whenever a latency of `
is allowed to the protocol, we allow the ideal protocol to have
a latency of ˆ̀= `+ 1 in our calculations.

Now, we derive lower bounds on adversarial advantage for
the user distributions as described in Section III-C, so that
we can compare our results with the work of Das. et. al.
It is worth to repeat here, when all the protocol parties are
honest, a protocol without using any secret sharing techniques
can perform as good as a protocol that uses secret sharing
techniques. Consequently, we will focus on scenarios with
compromisation for the remainder of this paper.

VII. ANONYMITY FOR SYNCHRONIZED USERS

In this section we are going to analyze the synchronized
user distribution UB as defined in Section III-C.

A. Lower Bound on Adversarial Advantage

Theorem 5. For user distribution UB , no protocol Π ∈ M
can provide δ-sender anonymity, for any
δ <

(
1− βN

N−1

) [
1− (τ+1)N−βNˆ̀−ˆ̀

N g(τ)− βNˆ̀+ˆ̀−τN
N g(τ+1)

]
where τ = bβNˆ̀+ˆ̀

N c, ˆ̀= `+ 1

and g(x) =

{
1 c < xˆ̀

1−
(c

xˆ̀

)/(K
xˆ̀

)
xˆ̀≤ c.

Suppose u0 and u1 are challenge users, and ub sends the
challenge message. The challenge reaches the recipient at
round r. We know from Claim 3 that Πideal is ideal; thus, we
can focus on Πideal here. By definition of Πideal, the challenge
message can have up to (βN + 1) shares, including the one
sent by ub.

Since we have synchronized user distribution, the best
strategy for the oracle O is to have equal number of shares
(exactly (βN+1)) per real message. Consider any round, there
is exactly one real message and (βN + 1) noise messages.

For our invariant to be satisfied, it is necessary that u1−b
sends at least one message within [r − `, r − 1]. Such a
message can be a share of the challenge message, or a real
message. If none of them is a share of the challenge message,
we require that at least one of those messages passes through
an honest node before round r. Hence,

11

Pr [Invariant 2 is true]

≤ Pr [u1−b sends a share of the challenge message.]
+ Pr[u1−b does not send a share of the challenge message

∧ u1−b sends a message in the given span of ˆ̀ rounds]

× Pr [At least one of the messages visits an honest node]

≤ βN
N−1 +

(
1− βN

N−1

)
×
∞∑
i=0

Pr [u1−b sends i messages]

×Pr [at least one of the i messages visits an honest node]

≤ βN
N−1 +

(
1− βN

N−1

)
(τ+1)N−βNˆ̀−ˆ̀

N × g(τ)

+
(

1− βN
N−1

)
βNˆ̀+ˆ̀−τN

N × g(τ + 1).

where τ = bβNˆ̀+ˆ̀

N c, and g(x) is a function that provides
an upper bound on the probability that at least one message
from u1−b passes through at least one honest node in a given
interval of ˆ̀ rounds, when u1−b sends exactly x messages.
Hence,

Pr[at least one message from u1−b passes through
an honest node |u1−b sends x messages]

≤ g(x) =


1 c < xˆ̀≤ K

1 c < K ≤ xˆ̀

1−
(c

xˆ̀

)/(K
xˆ̀

)
K > c ≥ xˆ̀

Note that, if we denote by x the number of messages sent
by u1−b in a given interval of ˆ̀ rounds, x can have only two
possible values depending on the values of β, ˆ̀ and N. That
is because the protocol tries to maximize the total number
of users that send messages in a given interval of ` rounds.
Hence, u1−b sends τ = bβNˆ̀+ˆ̀

N c messages with probability
(τ+1)N−βNˆ̀−ˆ̀

N , and sends (τ + 1) messages with probability
βNˆ̀+ˆ̀−τN

N .
By Claim 1 whenever Invariant 2 is not true the adversary

wins. Hence, we know that the probability that the adversary
guesses incorrectly is bounded by: Pr [0 = Apaths|b = 1] =
Pr [1 = Apaths|b = 0] ≤ 1

2Pr [Invariant 2 is true]. Therefore,
δ ≥ 1− Pr [Invariant 2 is true]

≥ 1− βN
N−1 −

(
1− βN

N−1

)
(τ+1)N−βNˆ̀−ˆ̀

N × g(τ)

−
(

1− βN
N−1

)
βNˆ̀+ˆ̀−τN

N × g(τ + 1)

=
(

1− βN
N−1

) [
1− (τ+1)N−βNˆ̀−ˆ̀

N g(τ)− βN`+`−τN
N g(τ+1)

]
.

When c < ˆ̀ and τ = 0, we can derive a more precise
lower bound on δ than the above one, although the above
one is still a valid lower bound on δ. Since τ = 0, there is
at most one message sent by u1−b in a span of ` rounds.
There is a chance that u1−b does not send a message, the
invariants are not satisfied (and the adversary wins) in that
case. When u1−b sends a message, the invariants are satisfied
only if the whole path of the message is not compromised
However, since c < ˆ̀, the adversary can not compromise
a whole path of length ˆ̀. Therefore, the adversary has a
chance to break the invariants if the message from u1−b is
dispatched in {r − c, . . . , r − 1}. If the message is sent by
u1−b in {r − ˆ̀, r − c − 1}, the invariants can be satisfied.

Therefore, we can derive a lower bound on δ as following:
δ ≥Pr[u1−b does not send a share of the challenge message]

×
(

1− Pr[u1−b sends a message in {r − `, r − c− 1}]

− Pr[u1−b sends a message in {r − c, r − 1}]

× Pr[At least one of the c parties is honest]
)

≥
(

1− βN
N−1

)(
1− βN(ˆ̀−c)+(ˆ̀−c)

N − βNc+c
N ×

[
1− 1

/(K
c

)])
B. Impossibility for Strong Anonymity

Theorem 6. For user distribution UB with K,N ∈ poly(η),
K > c, ˆ̀< N, N−1 > βN ≥ 1, no protocol Π ∈ can achieve
strong anonymity if 2ˆ̀β < 1 − ε(η), where ε(η) = 1/ηd for
a positive constant d.
When βN < 1, no protocol can achieve strong anonymity, if
2ˆ̀< N − ε(η), instead of 2ˆ̀β < 1− ε(η).
Additionally, when c ≥ βNˆ̀, strong anonymity can not be
achieved if β ≤ z < N−1

N − ε(η) for any constant z and
ˆ̀∈ O(1).

Proof. We know,
Pr [Invariant 2 is true]

≤ βN

N− 1
+

(
1− βN

N− 1

)
(τ + 1)N− βNˆ̀− ˆ̀

N
× g(τ)

+

(
1− βN

N− 1

)
βNˆ̀+ ˆ̀− τN

N
× g(τ + 1)

= D + (1−D) (g(τ)× T1 + g(τ + 1)× (1− T1))

where D = βN
N−1 , T1 = (τ+1)N−βNˆ̀−ˆ̀

N .
First, we need to observe that, if βNˆ̀ + ˆ̀ < N − 1

ηx ,
strong anonymity can not be achieved. Since, in that case, τ
will be zero, and hence, g(τ) will be zero. Moreover, T1 =
N−βNˆ̀−ˆ̀

N > 1
Nηx . Which means, g(τ)× T1 + g(τ + 1)× (1−

T1) < 1− 1
Nηx = not overwhelming. Now,

βNˆ̀+ ˆ̀< N− 1

ηx

⇐= 2βNˆ̀< N− 1

ηx
when βN ≥ 1

⇐⇒ 2β ˆ̀< 1− 1

ηd
∵ N ∈ poly(η)

where d is some constant. Alternatively, when βN < 1

βNˆ̀+ ˆ̀< N− 1

ηx
⇐= 2ˆ̀< N− 1

ηx
.

When c ≥ βNˆ̀, we additionally need both g(τ) and g(τ + 1)
to be overwhelming to achieve strong anonymity, which means
both τ(ˆ̀+ 1) and (τ + 1)ˆ̀ have to be at least O(1). If both
ˆ̀ and β are in O(1), τ = bβNˆ̀+ˆ̀

N c = b
(
β ˆ̀+

ˆ̀

N

)
c ∈ O(1).

Hence, τ ˆ̀ is also in O(1). Therefore, g(τ) and g(τ + 1) are
not overwhelming.

Similar to Section V, here also we can denote the overhead
factor B as B = βN. Therefore, we can rewrite the bound on
δ as follows —
δ ≥

(
1− B

N−1

) [
1− (τ+1)N−B ˆ̀−ˆ̀

N g(τ)− B ˆ̀+ˆ̀−τN
N g(τ + 1)

]
Note that the quantity g(τ) remains unchanged in this new

12

form (of the bound on δ) as well. Therefore, Theorem 6 can
be rewritten as the following:

Corollary 1. For user distribution UB with K,N ∈ poly(η),
K > c, ˆ̀< N, N− 1 > B ≥ 1, no protocol Π ∈ can achieve
strong anonymity if 2ˆ̀B < N− ε(η), where ε(η) = 1/ηd for
a positive constant d.
When B < 1, no protocol can achieve strong anonymity, if
2ˆ̀< N − ε(η), instead of 2ˆ̀B < N − ε(η).
Additionally, when c ≥ B ˆ̀, strong anonymity can not be
achieved if B ≤ N − 1− ε(η) and ˆ̀∈ O(1).

C. Interesting Cases

Now we discuss a selection of cases for different values of
ˆ̀, B, N, c and K.

1) B ≥ N−1 : here we can have δ = 0 even for ˆ̀= 0, for
all possible values of c and K. This shows that protocols can
achieve anonymity if the bandwidth overhead is sufficient, in
the presence of any amount of compromised protocol parties.
This is not possible when secret sharing techniques are not
used by protocols: even with β = 1 protocols needed favorable
latency overhead, and restriction on c and K

2) ˆ̀= N, B < N−1−ε(η) : In this case, a condition when
strong anonymity is possible is if c < τ ˆ̀. However, if c > τ ˆ̀

and K − c = constant, strong anonymity is impossible. In a
special case, where βN < 1, τ ≈ b1 + βNc = 1. In that case,
we need c < ˆ̀ or (K − c) ∈ ω(1). Which means, ˆ̀ by itself
can not provide strong anonymity, unless complemented by β
or enough number of honest parties.

3) K = poly(η), ˆ̀ = K, τ = 1, c = K − 1 : In this
case, strong anonymity is possible — which is not possible
for similar conditions if protocols can not use secret sharing
techniques. Since, the protocols can use secret sharing tech-
nique, the adversary needs compromise more protocol parties
to break strong anonymity. Which shows that secret sharing
can provide resistance against compromisation.

4) K = poly(η), τ ˆ̀ ≥ c,K − c = constant : This is a
slightly generic case of our previous example. Here as well,
since τ ˆ̀ ≥ c, the factors g(τ) and g(τ + 1) will evaluate
to 1. Therefore, strong anonymity is possible. Actually, the
relationship between K and c is immaterial here, as long as
τ ˆ̀≥ c. If protocols do not use secret sharing techniques, we
have seen that the relation between K and c is very important
for anonymity.

5) K = poly(η), τ ˆ̀ < c,K − c = constant : This is
similar to the previous case, except now we have τ ˆ̀ < c.
Since K − c = constant, g(τ) or g(τ + 1) can never be
overwhelmingly 1. Hence, δ can never be negligible for any
βN < N−1−ε(η). Therefore, strong anonymity is impossible
without a trivially large bandwidth overhead. With increasing
amount of compromisation, the latency and bandwidth over-
head need to increase accordingly to compensate the amount
of compromisation.

6) K/c = constant: This scenario is especially interesting,
because the impossibility/possibility of anonymity depends on
ˆ̀ and B.

(a) Needless to mention, when β is 1, the chance of strong
anonymity is obvious. We shall consider the more interesting
case where β < 1.
(b) If ˆ̀∈ O(1) and c > ˆ̀, it is impossible for any protocol to
achieve strong anonymity.
(c) If we are happy with a weaker form of anonymity, choosing
ˆ̀ ∈ Θ(log(η)) might be a good tradeoff. The adversarial
advantage will be bounded by 1/poly(η) instead of neg(η), but
only when K/c is large enough. For instance, if ˆ̀ = log(η)
and τ is not polynomially large, any K/c < 2 will result in
δ > Θ(1/η), given

(
1− βN

(N−1)

)
is not polynomially small.

(d) However, for ˆ̀ = log(η), if we pick K/c > 4, there is
a possibility that the adversarial advantage will be bounded
by O(1/η2), for any τ ∈ O(1) and any given value of(

1− βN
(N−1)

)
.

(e) If we pick ˆ̀= logb(η), and K/c > 2, there is a possibility
that the adversarial advantage will be bounded by O(1/ηb), for
any τ ∈ O(1) and any given value of

(
1− βN

(N−1)

)
.

VIII. ANONYMITY FOR UNSYNCHRONIZED USERS

Now, we are going to analyze the unsynchronized user dis-
tribution UP as defined in Section III-C. To briefly reiterate, in
this user distribution each user act independent of other users.
Each user tosses a coin with success probability p ∈ (0, 1]
in every round to decide whether to send a message or not,
independent of other rounds and any other user. Here, we
assume that the bandwidth overhead β to be a part of p. If the
user wants to send messages in each round with probability
p′ (p′ < p), then bandwidth overhead is β = p − p′ per user
in each round, or B = p−p′

p′ noise messages per real message.

A. Lower Bound on Adversarial Advantage

Theorem 7. For user distribution UP , no protocol Π ∈ M
can provide δ-sender anonymity, for any

δ <



(
1− Beff

N−1

) [
1− g(Z)×

(
1− (1− p)

ˆ̀
)]
, c ≥ ˆ̀(

1−
Beff
N−1

)
× (1− p)

ˆ̀−c
[
1−

(
1− (1− p)c

)
×
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(
K
c

)])]
c < ˆ̀

where Beff = min(B, ˆ̀p− 1), Z = min(ˆ̀, 2Beff + 1),
W is a random variable denoting the number of additional
shares for the challenge message, and

g(x) =

{
1−

(c

xˆ̀

)
/
(K
xˆ̀

)
xˆ̀≤ c ≤ K

1 otherwise.

Suppose u0 and u1 are challenge users, and ub sends the
challenge message. The challenge reaches the recipient at
round r. The challenge message can have up to B = p−p′

p′

additional shares(excluding the share sent by ub). Ideally, we
want u1−b to send at least one of the p−p′

p′ shares. If not, we at
least want u1−b to send at least one message in [r− ˆ̀, r− 1],
that passes through an honest node before round r.

Let us define Beff = min(B, ˆ̀p − 1). If we look at
Invariant 2, the shares sent at rounds {(r − ˆ̀), . . . , (r − 1)}

13

can contribute anonymity, but not the ones sent before round
(r− ˆ̀). That is why the number of shares influencing anony-
mity is limited by ˆ̀p− 1, even though B is really high.

Additionally, if W is a random variable denoting the num-
ber of shares of the challenge message excluding the share
sent by the challenge user, using Chernoff bound we know,
Pr [W ≥ 2E[W]] = Pr [W ≥ 2B] ≤ exp

(
−2E[W]2

N2 N
)

,

where W =
∑N
i=1Wi with Wi denoting the number of

shares sent by the i-th user. Note that W is a random
variable, where W = min

(
ˆ̀(X −X ′), (X −X ′)/X ′

)
. Here

X and X ′ follow Binom(ˆ̀, p) and Binom(ˆ̀, p′) respectively.
Pr [W ≥ 2E[W]] is negligible in N , and hence negligible
in η, so long as E[W] is not negligible. Let us denote,
Z = min(ˆ̀, 2Beff + 1).

With the above in our hand, for c ≥ ˆ̀ we can derive the
following:

Pr [Invariant 2 is true]

≤ Pr [u1−b sends a share of the challenge message.]

+ Pr[u1−b does not send a share of the challenge message

∧ u1−b sends a message in the given span of round ˆ̀]

× Pr[Some share of the challenge message visits honest node

and some message from u1−b visits honest node]

≤ Beff

N− 1
+

(
1− Beff

N− 1

)
Pr [At least one honest node in Z paths]

× Pr
[
u1−b sends at least one message in{(r − ˆ̀), . . . , (r − 1)}

]
≤ Beff

N− 1
+

(
1− Beff

N− 1

)
× g(Z)×

(
1− (1− p)ˆ̀

)

By Claim 1, the adversary wins whenever Invariant 2
is not true. Hence, the advantage of the adversary
is bounded by: δ ≥ 1 − Pr [Invariant 2 is true] ≥(

1− Beff
N−1

) [
1− g(Z)×

(
1− (1− p)

ˆ̀
)]
.

When c < ˆ̀, we can derive the following,

Pr [Invariant 2 is true]

≤Pr [u1−b sends a share of the challenge message.]

+ Pr[u1−b does not send a share of the challenge message]

∧
(
Pr[u1−b sends a message in {r − ˆ̀, r − c− 1}]

+ Pr[u1−b does not send a message in {r − ˆ̀, r − c− 1}]

×
(
Pr[u1−b sends more than one message in {r − c, r − 1}]

+ Pr[u1−b sends only one message in {r − c, r − 1}]
× Pr[Some share of the challenge message visits honest node

and some message from u1−b visits honest node]
))

≤ Beff

N− 1
+

(
1− Beff

N− 1

)[(
1− (1− p)ˆ̀−c

)
+ (1− p)ˆ̀−c

×
(

Pr [W ≥ 1 ∧Xu1−b(c) ≥ 2]

+ Pr [W = 0 ∧Xu1−b(c) ≥ 1]×
[
1− 1/

(K
c

)])]
≤ Beff

N− 1
+

(
1− Beff

N− 1

)[(
1− (1− p)ˆ̀−c

)
+ (1− p)ˆ̀−c

×Pr [Xu1−b(c) ≥ 1]

(
Pr [W ≥ 1] + Pr [W = 0]

[
1− 1/

(K
c

)])]
≤ Beff

N− 1
+

(
1− Beff

N− 1

)[(
1− (1− p)ˆ̀−c

)
+ (1− p)ˆ̀−c

× (1− (1− p)c)
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(K
c

)])]
Thus,

δ ≥ 1− Pr [Invariant 2 is true]

≥
(

1− Beff
N−1

)
× (1− p)

ˆ̀−c
[
1−

(
1− (1− p)c

)
×
(

Pr [W ≥ 1] + Pr [W = 0]
[
1− 1/

(
K
c

)])]
.

B. Impossibility for Strong Anonymity

We can observe that, to achieve strong anonymity, we need
Beff > (N−1)−neg(η) or, c ≤ Z ˆ̀. Beff > (N−1)−neg(η) is a
trivial condition, which implies very high bandwidth overhead.

However, c ≤ Z ˆ̀ is not very trivial. We know that, Z =
min(ˆ̀, 2Beff+1), where (2Beff+1) represents an upper bound
on the number of shares per real message in a given interval
of ˆ̀ rounds.

Theorem 8. For user distribution UP , no protocol Π ∈ M
can achieve strong anonymity if B < (N − 1) − ε(η) and
pˆ̀< 1− ε(η) and c > ˆ̀2 and ˆ̀2 ∈ O(1).

Proof sketch. If B < (N − 1) − ε(η), B
N−1 will be less than

1−neg(η). Hence H =
[
1− g(Z)×

(
1− (1− p)

ˆ̀
)]

has to
be negligible to achieve strong anonymity.

When pˆ̀ < 1 − ε(η),
(

1− (1− p)
ˆ̀
)

can never be over-
whelming, and consequently, H can never be negligible.

Even when
(

1− (1− p)
ˆ̀
)

is overwhelming, g(Z) has to
be overwhelming as well to achieve strong anonymity, which
implies

[(c

Z ˆ̀

)/(K

Z ˆ̀

)]
has to be negligible (since c ≥ ˆ̀2 =⇒

14

c ≥ Z ˆ̀), to achieve strong anonymity.
(c
Z ˆ̀

)
/
(K
Z ˆ̀

)
can never be

negligible if ˆ̀2 ∈ O(1), since Z ∈ O(ˆ̀).

In a similar way we can prove the corollaries as well.

Corollary 2. For user distribution UP , no protocol Π ∈ M
can achieve strong anonymity if B ∈ O(1) and c > (2B+1)ˆ̀

and ˆ̀∈ O(1).

Corollary 3. For user distribution UP and B = 0, no protocol
Π ∈ M can achieve strong anonymity if and c > ˆ̀ and
ˆ̀∈ O(1).

Theorem 9. For user distribution UP , p < 1 − ε(η), c
K =

const, no protocol Π ∈ M can achieve strong anonymity if
Beff < (N−1)−ε(η) and c > ˆ̀2 and ˆ̀2 ∈ O(log(η)), where
ε(η) = 1/ηx for a positive constant x.

Proof. Note that, we can rewrite,
Pr [Invariant 2 is true]

≤ B
(N−1) +

(
1− B

(N−1)

)
×

ˆ̀∑
d=0

[
1−

(c

d`′

)/(K

d`′

)] [(ˆ̀
d

)
pd(1− p)ˆ̀−d

]
If B < (N − 1) − ε(η), β

N−1 will be less than 1 −
neg(η). In that case, since `′ is always upper bounded by
ˆ̀, D =

∑ˆ̀

d=0

[
1−

(c

dˆ̀

)
/
(K
dˆ̀

)] [(ˆ̀
d

)
pd(1− p)ˆ̀−d

]
has to

be overwhelming to achieve strong anonymity. We know,∑ˆ̀

d=0

[(ˆ̀
d

)
pd(1− p)ˆ̀−d

]
= 1. Therefore, for D to become

overwhelming, we need
[
1−

(c

dˆ̀

)
/
(K
dˆ̀

)]
to be overwhelming

for each d, whenever
[(ˆ̀
d

)
pd(1− p)ˆ̀−d

]
is non-negligible.

Note that, since both ˆ̀ and d ≤ ˆ̀ are in poly(η), dˆ̀ is in
O(ˆ̀2).

We know, c
K = const = 1

y . Therefore, we can say,

c− dˆ̀

K− dˆ̀
>

1

y
⇐⇒

(
c− dˆ̀

K− dˆ̀

)dˆ̀

>

(
1

y

)dˆ̀

=⇒ c(c− 1) . . . (c− dˆ̀)

K(K− 1) . . . (K− dˆ̀)
>

(
c− dˆ̀

K− dˆ̀

)dˆ̀

>

(
1

y

)dˆ̀

⇐⇒
(

c
dˆ̀

)(
K
dˆ̀

) > (1

y

)dˆ̀

.

(
1
y

)dˆ̀
can never be negligible for when dˆ̀ is in O(log(η))

and c > dˆ̀ — which is bound to happen if ˆ̀2 ∈ O(log(η))
and c > ˆ̀2.

Theorem 10. For user distribution UP , for B < (N−1)−ε(η)
and p(ˆ̀−c) < 1−ε(η), no protocol Π ∈M can achieve strong
anonymity if pc < 1− ε(η) OR c ∈ O(1).

Proof Sketch. When B < (N − 1) − ε(η),
(

1− Beff
N−1

)
can

never be negligible. Additionally, because p(ˆ̀− c) < 1 −
ε(η), (1− p)

ˆ̀−c can not be negligible. Therefore, to achieve
strong anonymity,

(
1− (1− p)c

)
and

[
1− 1/

(
K
c

)]
has to be

overwhelming – that is not possible if pc < 1− ε(η) or c ∈
O(1).

C. Interesting Cases

Similar to Section VII, now we discuss a few examples for
different values of ˆ̀, β, N, c and K.

1) B ≥ N : here we can have δ = 0 even for ˆ̀ = 0, for
all possible values of c and K. This can happen because for
each real message there are at least N noise messages, and
each of them can be a share of the real message. This shows
that protocols can achieve anonymity, given enough bandwidth
overhead, in the presence of any amount of compromised
protocol parties (except ub and u1−b). This was not possible
when secret sharing techniques are not used by protocols, even
with β = 1 protocols needed favorable latency overhead, and
restriction on c.

2) ˆ̀ = N, B < N − 1 : strong anonymity is possible if
c < Z ˆ̀. Which means, ` by itself can not provide strong
anonymity, unless complemented by β or enough number of
honest parties.

3) K = poly(η), ˆ̀ = K, p = 1/K, c = K − 1 : In this
case, strong anonymity is possible — which is not possible
for similar conditions if protocols can not use secret sharing
techniques. Which again shows, the adversary needs to com-
promise more protocol parties to break strong anonymity, if
the protocols can use secret sharing technique.

4) K = poly(η), 2p`2 ≥ c,K − c = constant : This is a
slightly generic case of our previous example. Since 2p`2 ≥ c,
the factor g(2p`) will evaluate to 1. Therefore, strong anony-
mity is possible. Actually, the relationship between K and c
is immaterial here, as long as τ` ≥ c. If protocols do not
use secret sharing techniques, we have seen that the relation
between K and c is very important for anonymity.

5) K = poly(η), 2pˆ̀2 < c,K− c = constant : This is sim-
ilar to the previous case, except now we have 2pˆ̀2 < c. Since
K − c = constant, g(2pˆ̀) can never be overwhelmingly 1.
Hence, δ can never be negligible for any B < N−1−1/poly(η).
Therefore, strong anonymity is impossible without a trivially
large bandwidth overhead. With increasing amount of compro-
misation, the latency and bandwidth overhead need to increase
accordingly to compensate the amount of compromisation.

6) K/c = constant: This scenario is especially interesting,
because the impossibility/possibility of anonymity depends on
ˆ̀ and B.
(a) Needless to mention, when B is N , the chance of strong
anonymity is obvious. We shall consider the more interesting
case where B < N .
(b) If ˆ̀∈ O(η) and c > ˆ̀, it is impossible for any protocol to
achieve strong anonymity.
(c) If we are happy with a weaker form of anonymity, choosing
ˆ̀ ∈ Θ(log(η)) might be a good tradeoff. The adversarial
advantage will be bounded by 1/poly(η) instead of neg(η), but
only when K/c is large enough. For instance, if ˆ̀ = log(η),
any K/c < 2 will result in δ > Θ(1/η), given

(
1− B

(N−1)

)
is

not polynomially small.

15

(d) However, for ˆ̀ = log(η), if we pick K/c > 4, there is a
possibility that the adversarial advantage will be bounded by
O(1/η2), for any given value of

(
1− B

(N−1)

)
.

(e) If we pick ˆ̀= logb(η), and K/c > 2, there is a possibility
that the adversarial advantage will be bounded by O(1/ηb), for
any given value of

(
1− B

(N−1)

)
.

D. Modified User Distribution

For secret-sharing based ACNs a different noise distribution
is more beneficial for the protocols. In the spirit of over-
approximating the protocol’s capabilities, we assume that for
each real message that is sent, up to B noise messages are
generated from other clients, in contrast to previously sending
a noise message with probability p − p′. Since messages
can not be sent in parts, we assume that B is an integer
∈ {0, . . . ,N− 1}. Let us call this user distribution Um.

The ideal protocol would in this setting try to maximize
the number of users sending B noise messages; additionally
it will maximize the total number of users sending messages
in a given span of ˆ̀ rounds.

In this case, we can define the expected number of messages
sent by user i in a round as p = (p′N + p′BN)/N = p′ +
p′B. Therefore, in a span of ˆ̀ rounds, the expected number
of messages sent by u1−b is ˆ̀p.

Suppose, X(i) is a random variable denoting the number
of real messages sent by user i in a span of ˆ̀ rounds. Using
Chernoff bound on X =

∑N
i=1X

(i), we can prove that X
is bounded by 2E [X] with overwhelming probability. If we
denote the total number of messages sent by u1−b is a span
of ˆ̀ rounds with a random variable Y , then Y = X(1 +
B)/N. Therefore, Y will be bounded by 2E [Y] = 2ˆ̀p with
overwhelming probability.

Then, we can derive the following bounds on adversarial
advantage in a way very analogous to Section VIII-A.
when c < ˆ̀ , B = 0 :

δ ≥
(

1− B
N−1

)
(1− p)

ˆ̀−c
[
1−
(
1− (1− p)c

) [
1− 1/

(
K
c

)]]
when c < ˆ̀ , B ≥ 1 :
δ ≥

(
1− B

N−1

)
(1− p)

ˆ̀−c
(1− p)c .

When c ≥ ˆ̀ : δ ≥
(

1− B
N−1

) [
1− g(Ẑ)×

(
1− (1− p)

ˆ̀
)]
,

where Ẑ = min(ˆ̀, 2`p,B). Note that, in the lower bound of
δ, we are using Bprob and not Bprob′.

Analogously we can derive the following impossibility
theorems which are very similar to those in Section VIII-B.

Theorem 11. For user distribution Um, no protocol Π ∈ M
can achieve strong anonymity if B < (N−1) and pˆ̀< 1−ε(η)
and c > ˆ̀2 and ˆ̀2 ∈ O(1).

Theorem 12. For user distribution Um, p < 1 − ε(η), c
K =

const, no protocol Π ∈ M can achieve strong anonymity if
B < (N − 1) and c > ˆ̀2 and ˆ̀2 ∈ O(log(η)), where
ε(η) = 1/ηx for a positive constant x.

Theorem 13. For user distribution Um, for B < (N− 1) and
p(ˆ̀− c) < 1 − ε(η), no protocol Π ∈ M can achieve strong
anonymity if pc < 1− ε(η) or c ∈ O(1).

The proofs and analysis of the above impossibility con-
ditions are very similar to that in Section VIII-B, the only
differences are that we use B instead of Beff in this setting,
and we use newly defined Ẑ instead of Z. Hence, we refer
the readers to Section VIII-B for a detailed account on those.

E. Improved bound for classical protocols

As a byproduct of our new lower bound for δ for secret
sharing protocols, we also achieve a new and improved bound
for classical protocol for user distributions UP and Um. Instead
of providing a tedious and long derivation, we provide a short
intuition here about how the bounds are derived for UP . In
Invariant 2, there can be multiple paths for the messages from
u1−b, also for the shares of the challenge message. However, if
we reduce Invariant 2 to Invariant 1, there can be only one path
for the challenge message. Additionally, the protocol does not
gain anything for anonymity from the shares of the challenge
message, because there are no shares.

Therefore, the adversarial advantage δ for c < ` in case of
UP can be written as:
δ ≥Pr[u1−b does not send a share of the challenge message]

× Pr[u1−b does not send a message in {r − `, r − c− 1}]

×
(

1− Pr[u1−b sends a message in {r − c, r − 1}]

× Pr[At least one of the c parties is honest]
)

≥ 1× (1− p)
ˆ̀−c
[
1−

(
1− (1− p)c

) [
1− 1/

(
K
c

)]]
.

Similar for c ≥ `, δ ≥ 1−
(

1− (1− p)`
) [

1−
(
c
`

)
/
(
K
`

)]
.

IX. ANALYSIS OF RESULTS

A. Impossibility Results

From our impossibility theorems in Sections VII and VIII,
we observe that strong anonymity requires a combination of
latency and bandwidth overhead - which is very similar to the
observations from Das. et. al. [13]. However, secret-sharing
based protocols improves on the cost to achieve anonymity. As
a special example, with the aid of secret sharing techniques,
strong anonymity can be achieved for β > 1 (or p > 1) –
which is not possible for protocols that do not use any secret
sharing. In Table II we compare the impossibility conditions
for anonymity for protocols with secret sharing against classi-
cal (mix-net-type) protocols. Whenever the conditions in a line
in Table II are met, strong anonymity is impossible, e.g., for
synchronized user distribution for mixnets, if c > ` and either
of ` ∈ O(1) or 2`B < N − ε(η) is true, strong anonymity is
impossible.

For secret sharing based protocols, we additionally ob-
serve that bandwidth overhead can provide resistance against
compromised parties. In the previous case (non-secret-sharing
scenario), bandwidth only compensated for latency.

16

TABLE II
Impossibility Conditions for Anonymous Communication, with number of protocol-nodes K, number of compromised protocol parties c, number of clients
N, latency overhead `. In all cases we assume that ` < N and (N− 1)− ε(η) ≥ B ≥ 1 and ε(η) = 1/ηd for a positive constant d. We compare ` = x of
mix-net type protocols with ˆ̀= x of protocols with secret sharing; and we denote the case with ` = x (See Footnote 4) in the leftmost column. All other
columns shows the impossibility conditions for anonymity for the combination of user distribution and protocol class. Where two rows have overlapping

cases (leftmost column), if either of the conditions are true, strong anonymity is impossible.

Cases UB Classical UP Classical UB , with secret sharing UP , with secret sharing
c ≥ 0 2`B < N− ε(η) 2`p < 1− ε(η) 2ˆ̀B < N− ε(η) pˆ̀< 1− ε(η)

B < 1 2`B < N− ε(η) 2`p < 1− ε(η) 2ˆ̀< N − ε(η) pˆ̀< 1− ε(η)

0 < c ≤ ` 2(`− c)B < N− ε(η) 2(`− c)p < 1− ε(η) 2(ˆ̀− c)B < N− ε(η) p(ˆ̀− c) < 1− ε(η)

` < c ≤ B` ` ∈ O(1) ` ∈ O(1) 2(ˆ̀− c)B < N− ε(η) p(ˆ̀− c) < 1− ε(η)

B` < c ≤ `2 ` ∈ O(1) ` ∈ O(1) ˆ̀∈ O(1) p(ˆ̀− c) < 1− ε(η)

c > `2 ` ∈ O(1) ` ∈ O(1) ˆ̀∈ O(1) ˆ̀∈ O(1)

K/c ∈ O(1) ` ∈ log(η) ` ∈ log(η) ˆ̀2 ∈ log(η) ˆ̀2 ∈ log(η)

B. Interesting Cases

We next discuss a series of interesting cases for anonymous
communication protocols with secret sharing. For comparison
purpose, we take cases which are canonical to the cases in ??.
When we compare the results from classical scenarios with
the results of secret-sharing scenarios, we compare ` = x
of classical with ˆ̀ = x of secret-sharing scenario to induce
fairness.4. We refer to Table III for a concise overview.

X. IMPLICATIONS

Our novel necessary constraints for the core of secret-
sharing based ACNs describe a large set of lower bounds for
combinations of bandwidth overhead, latency overhead, resis-
tance to compromised parties, and the degree of anonymity.
The rich literature on ACNs contains a few proposals that
come close to these novel necessary contraints. This section
discusses some of these ACNs, in particular whether they
utilize advantages of secret-sharing based ACNs that lead to
the differences in this work’s necessary constraints for mix-
nets and secret-sharing based ACNs.

Chaum started a line of work on so-called DC-nets [7], [21],
[23], [24]. DC-nets provide an anonymous broadcast channel.
In DC-nets, in every round, each party broadcasts either a
noise or real message to all clients. With our formalism that
means B = N , i.e., every real message incurs an overhead
of N messages. In DC-nets, pair-wise shared keys among the
clients are used to create noise messages that cancel out in an
XOR combination of all messages. To avoid collisions in the
broadcast channel, i.e., that two real messages disturb each
other, usually some cryptographic scheduling protocol is run
such that in each round only one party is scheduled to send
a message but each party only knows whether it is its own
turn but not which other party’s turn it is. The communication
complexity of this protocol is very low. The latency is 1 = `
round (ignoring the scheduling protocol). With B = N and
` = 1, DC-nets satisfy our novel necessary constraints for

4When we allow latency to be ` + 1 for secret-sharing scenarios to
approximate noise generated by internal parties with user noise, we also allow
protocols with only user noise to have latency `+ 1. It is unfair to compare
them with classical protocols with latency `. Moreover, when ` = 0, there is
no intermediate party, so there is no internal noise.

secret-sharing based ACNs from Theorem 9 and escape our
impossibility results.

The bandwidth and communication overhead of DC-nets
are tremendous, as every client sends a message to every
other client in each round. The ACN Dissent-AT [7] (the
AnyTrust-variant of Dissent) improves among other features
the communication overhead of DC-nets by relying on K
computation servers (which constitute the K protocol parties
in terms of our formalism), assuming that at least one of these
servers is honest. Using secret-sharing and assuming a shared
secret with each of the K servers, Dissent-AT then achieves
that each client only has to send each real or noise message to
one of the K servers and not to all other clients. Afterwards,
these K servers broadcast these shares to each other. Hence,
the bandwidth overhead is N messages for each real message,
except that these N messages are not sent to N parties as in
DC-nets (leading to a communication overhead of N2) but
only to one of the K servers (leading to a communication
overhead of N). For our formalism the bandwidth overhead is
B = N just as for DC-nets. Hence, Dissent-AT also satisfies
our necessary constraints for secret-sharing based ACNs from
Theorem 9 and escapes our impossibility results.

Dicemix [10] is a peer-to-peer AC protocol that is based on
the DC-net approach. While Dicemix includes a self-healing
mechanism that leads to 4 + 2f communication rounds for
one message if f peers are malicious, this mechanism does not
kick in if all peers are honest, leading to only 4 communication
rounds, resulting in ` ∈ θ(1). As every party sends a message
in every round, β ∈ θ(N/N). For the same reasons as DC-nets,
Dicemix escapes our impossibility results.

There is a recent line of work [8], [22], [25] that uses secret-
sharing (e.g., inside modified private information retrieval
protocols) to achieve strong anonymity in the presence of
compromised parties. These protocols, however, fail to achieve
the property that we assume: even for the recipients of the
message the packet sent by the real sender and the dummy
messages are indistinguishable.

In conclusion, none of the ACNs of which we are aware
utilize the mix of multi-hop layered encryption feature, as used
in mix-nets, with secret-sharing like features that render the
real sender’s packet indistinguishable form a noise message

17

TABLE III
Interesting cases for Anonymous Communication (with secret sharing techniques), with the number of protocol-nodes K, number of compromised protocol
parties c, number of clients N, and message-threshold T , expected latency `′ per node, dummy-message rate β, and ε(η) = 1/ηd for a positive constant d.
In the rows labeled with “Ano.” we show whether strong anonymity might be possible (“strong”), whether quadratic anonymity (δ < 1

η2
) might be possible

(“quad”) or whether neither of them are possible (“none”). In each row labeled with “Add. req.” we describe which additional requirements (for the
respective degree of anonymity) we show. We compare ` = x of classical with ˆ̀= x of secret-sharing scenario; and we denote the case with ` = x (See

Footnote 4) for ease of notation.

UB Classical UB Secret sharing UP Classical UP Secret sharing
Cases Ano. Add. req. Ano. Add. req. Ano. Add. req. Ano. Add. req.
B = N, ` = 04, c = 0 none strong none strong p`
B = N, ` = 0, c = K none strong none strong
B = N, ` = 1, c = 0 strong strong strong p′` ≥ 1 strong p′` ≥ 1
B = N, ` = 1, c = K/2 quad K ∈ Ω(η) strong strong K ≥ η, p′` ≥ 1 strong p′` ≥ 1
B = N, ` = 1, c = K− 1 quad K ∈ Ω(η) strong quad K ≥ η2 strong
B = N, ` = 1, c = K none strong p′` ≥ 1 none strong p′` ≥ 1

` = K, B` = N, c = K/2,K = N
2

quad N ∈ Θ(η) quad N ∈ Θ(η) strong p > 2η
K

strong p < 2η
K

` = K, B` = N, c = K/2,K =
√
N quad N ∈ Θ(η2) quad N ∈ Θ(η2) strong p > 2η

K
strong p > 2η

K
` = η,B` = N, c = K/2,K ∈ O(1) none none strong p > η

`−c
strong p > η

`−c

` = K, B` = N, c = K− 1 quad K ≥ η2 strong strong p ≥ η
K−1

strong p ≥ η
K−1

` = K, B` = N, c = K− 1 quad K ≥ η2 strong quad p < 1
K−1

quad p < 1
K−1

` = K− 1, B` = N, c = K− 1 quad K ≥ η2 quad quad p < 1
K−1

quad p < 1
K−1

` = K− 1, B` = N, c = K− 1 quad K ≥ η2 quad strong p ≥ η
K−1

strong p ≥ η
K−1

` = K− 1, B` = 2N, c = K− 1 quad K ≥ η2 strong strong p ≥ η
K−1

strong
B =

√
N, ` =

4
√
N, c =

√
K none none strong p ≥ η√

K
strong p ≥ η√

K

B =
√
N, ` =

√
N, c =

√
K quad N,K ∈ Ω(η2) quad N,K ∈ Ω(η2) strong p ≥ η√

K
strong p ≥ η√

K

B =
√
N, ` =

√
N, c = log(K) none none none none

B = N√
η
, ` =

√
η, c = 2η,K = 4η quad quad strong p > 1/2 strong p > 1/2

K
c

= 2, B = 0, ` = log(η) none none none none
K
c

= 2, B < N
2log(η)

, ` = log(η) none none none none
K
c

= 2, B ≥ 2N
log(η)

, ` ≥ log(η) none quad none strong
K
c

= 4, B > N
log(η)

, ` ≥ log(η) quad strong quad strong

even for the recipients.

XI. CONCLUSION AND FUTURE WORK

In this work we show that protocols with secret-sharing
have better hopes for anonymity. We motivate the protocol
designers to build new protocols in that direction. Even
then the anonymity of the protocols will be bounded by the
impossibility conditions presented in this paper, unless there
exist a protocol that can efficiently break our assumptions on
secret sharing. In case, a protocol finds an efficient way to
achieve mixing in a dishonest node, still the protocol will be
restricted by the condition `p > 1 for strong anonymity. That
leaves us with the other assumption on secret sharing, and the
following question:

Is it possible to build an AC protocols that uses a
secret sharing scheme that generates only w < k×n
shares for n messages where at least k shares are
necessary to reconstruct all the m messages cor-
rectly, without using any trusted third party, with a
communication of O(n) and constant latency over-
head?

If such a protocol can exist, that protocol will escape the
impossibility conditions provided in this paper. By proving
impossibility in all other direction, we show the plausible path
to the research community.

REFERENCES

[1] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity trilemma:
Strong anonymity, low bandwidth overhead, low latency - choose two,”
in 2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp.
108–126.

[2] M. Ando, A. Lysyanskaya, and E. Upfal, “On the
complexity of anonymous communication through public
networks,” CoRR, vol. abs/1902.06306, 2019. [Online]. Available:
http://arxiv.org/abs/1902.06306

[3] A. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis, “The
loopix anonymity system,” in Proc. 26th USENIX Security Symposium,
2017.

[4] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich, “Vuvuzela:
Scalable private messaging resistant to traffic analysis,” in Proc. 25th
ACM Symposium on Operating Systems Principles (SOSP 2015), 2015.

[5] D. Lazar and N. Zeldovich, “Alpenhorn: Bootstrapping secure commu-
nication without leaking metadata,” 10 2016.

[6] D. Chaum, “Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms,” Communications of the ACM, vol. 4, no. 2, pp. 84–88,
1981.

[7] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson, “Dissent
in Numbers: Making Strong Anonymity Scale,” in 10th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 12),
2012, pp. 179–182.

[8] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, “Riposte: An anony-
mous messaging system handling millions of users,” in Proc. 36th IEEE
Symposium on Security and Privacy (S&P 2015), 2015, pp. 321–338.

[9] H. Corrigan-Gibbs and B. Ford, “Dissent: Accountable Anonymous
Group Messaging,” in Proc. 17th ACM Conference on Computer and
Communication Security (CCS), 2010, pp. 340–350.

18

[10] T. Ruffing, P. Moreno-Sanchez, and A. Kate, “P2P Mixing and Unlink-
able Bitcoin Transactions,” in Proc. 25th Annual Network & Distributed
System Security Symposium (NDSS), 2017.

[11] T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to
derive simple fault-tolerant algorithms,” Distributed Computing, vol. 2,
no. 2, pp. 80–94, 1987.

[12] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS and fact-track
multiparty computations with applications to threshold cryptography,”
in Proc. ACM PODC, 1998, pp. 101–111.

[13] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anony-
mity trilemma: Strong anonymity, low bandwidth, low latency—
choose two,” Cryptology ePrint Archive, Report 2017/954, 2017,
https://eprint.iacr.org/2017/954.

[14] N. Gelernter and A. Herzberg, “On the limits of provable anonymity,”
in Proc. Workshop on Privacy in the Electronic Society (WPES 2013),
2013, pp. 225–236.

[15] A. Hevia and D. Micciancio, “An indistinguishability-based characteriza-
tion of anonymous channels,” in Proc. Eighth International Symposium
on Privacy Enhancing Technologies (PETS 2008), N. Borisov and
I. Goldberg, Eds., 2008, pp. 24–43.

[16] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi,
“AnoA: A Framework For Analyzing Anonymous Communication Pro-
tocols,” in Proc. 26th IEEE Computer Security Foundations Symposium
(CSF 2013), 2013, pp. 163–178.

[17] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi,
“AnoA: A Framework For Analyzing Anonymous Communication Pro-
tocols,” Journal of Privacy and Confidentiality (JPC), vol. 7(2), no. 5,
2016.

[18] S. Oya, C. Troncoso, and F. Pérez-González, “Do dummies pay off?
limits of dummy traffic protection in anonymous communications,” in
Proc. 14th Privacy Enhancing Technologies Symposium (PETS 2014),
2014.

[19] M. Ando, A. Lysyanskaya, and E. Upfal, “Practical and Provably Secure
Onion Routing,” in Proceedings of the 45th International Colloquium on
Automata, Languages, and Programming (ICALP). Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2018, pp. 144:1–144:14.

[20] ——, “On the Complexity of Anonymous Communication Through
Public Networks,” CoRR arXiv, vol. abs/1902.06306, 2019.

[21] P. Golle and A. Juels, “Dining cryptographers revisited,” in Proc. of
Eurocrypt 2004, 2004.

[22] S. Angel and S. Setty, “Unobservable Communication over Fully Un-
trusted Infrastructure,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation (OSDI). USENIX
Association, 2016, pp. 551–569.

[23] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of Cryptology, vol. 1, no. 1, pp.
65–75, 1988.

[24] S. Goel, M. Robson, M. Polte, and E. Sirer, “Herbivore: A scalable and
efficient protocol for anonymous communication,” 2003.

[25] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle: An efficient
communication system with strong anonymity,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 2, pp. 115–134, 2016.

APPENDIX A
PROTOCOL MODEL REVISITED.

A. Construction of a Concrete Adversary

Given two challenge users u0 and u1 and the set of observed
tokens (t, r) ∈ Tokens, where t is the token and r the round
in which the token was observed, an adversary can construct
the sets Sj (for j ∈ {0, 1}). Assume the challenge message
arrives at the receiver R in a round r. We construct possible
paths of varying length k, s.t., each element p ∈ Sj represents
a possible path of the challenge message starting from uj (j ∈
{0, 1}) and the challenge message then arrives at R in round
rk = r. With challenge bit b, Sb cannot be empty, as the actual
path taken by the challenge message to reach R has to be one
element in Sb.

Sj = {p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens s.t. k ≤ `
∧ t1.prev = uj ∧ tk.next = R ∧ tk.msg = Chall

∧ ∀i∈{1,...,k−1}(ti.next = ti+1.prev ∧ ri+1 = ri + 1

∧ (∃t′i+1 : (t′i+1, ri+1) ∈ Tokens ∧ t′i+1.prev = ti.next

∧ t′i+1.IDt = ti.IDt)⇒ t′i+1 = ti+1)}

Definition 2 (Adversary Apaths). Given a set of users S,
a set of protocol parties P of size K, and a number of
possibly compromised nodes c, the adversary Apaths proceeds
as follows: 1) Apaths selects and compromises c different
parties from P uniformly at random. 2) Apaths chooses two
challenge users u0, u1 ∈ S uniformly at random. 3) Apaths
makes observations and, based upon those, constructs the sets
S0 and S1. For any i ∈ {0, 1}, if Si = ∅, then Apaths returns
1− i. Otherwise, it returns 0 or 1 uniformly at random.

Apaths thus checks whether both challenge users could
have sent the challenge message, and explicitly ignore dif-
ferences in probabilities of the challenge users having sent
the challenge message, as those probabilities can be protocol
specific. Naturally, when c = 0, Apaths represents a non-
compromising (yet global network-level) adversary, i.e., an
adversary that compromises no protocol nodes but eavesdrops
all links between nodes; but when c 6= 0, Apaths is partially
compromising.

19

